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Abstract

Transonic aeroelastic stability analyses and flutter
calculations are presented for a generic transpori-type wing
based on the use of the CAP.TSD (Computational
Asroelasticity Program - Transonic Small Disturbance)
finite-difference code. The CAP-TSD code has been recently
developed for transonic unsteady aerodynamic and aeroelastic
analysis of complete aircraft configurations. In this study, a
binary aeroelastic system consisting of simple bending and
torsion modes was used to study aeroelastic behavior at
transonic speeds. Generalized aerodynamic forces are
presented for a wide range of Mach number and reduced
frequency. Aeroelastic characteristics are presented for
variations in freestream Mach number, mass ratio, and
bending-torsion frequency ratio. Flutter boundaries are
presented which have two transonic dips in flutter speed.
The first dip is the "usual® transonic dip involving a
bending-dominated flutter mode. The second dip is
characterized by a single degree-of-freedom torsion
oscillation. These aeroelastic resuits are physically
interpreted and shown to be related to the steady-state shock
location and changes in generalized aerodynamic forces due to
freestream Mach number.

Nomenciature

generalized aerodynamic force resulting from
pressure induced by mode j acting through
displacements of mode i

full-span aspect ratio

wing root semichord, ¢r/2

wing local chord

wing reference chord (root chord)

pressure coefficient

critical pressure coefficient

structural mode shape

reduced frequency, wcr/2U

freestream Mach number

pulse motion

pulse amplitude

nondimensional dynamic pressure,
(U/(bwgVi))2

nondimensional dynamic pressure at flutter
Laplace transform variable, ¢ + io

time, nondimensionalized by freestream speed
and wing refarence chord

nondimensional time at the pulse center

wing taper ratio

freestream speed
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w constant related to the pulse width

z(x,y,t) wing deformation at time t

oo mean angle of attack

byl fractional semispan

Acn midchord sweep angle

u ratio of wing mass to mass of air in the
truncated cone that encloses the wing

c damping coefficient of Laplace transform
variable

® angular frequency

©h natural frequency of bending mode

Wy natural frequency of torsion mode

Introduction

Prediction of transonic unsteady aerodynamics for
aeroelastic analysis has been aided by the development of
finite-difference computer codes. An example of one of the
most fully developed finite-difference codes for aeroelastic
analysis is the CAP-TSD! code recently developed at the
NASA Langley Research Center. The name CAP-TSD is an
acronym for Computational Aeroelasticity Program -
Iransonic §Small Disturbance. The code permits the
calculation of steady and unsteady flows about complete
aircraft configurations for aeroelastic applications in the
transonic speed range. Steady and unsteady pressure
comparisons were presented in Refs. 1 to 3 for numerous
cases which demonstrated the geometrical applicability of
CAP-TSD. These calculated results were generally in good
agreement with available experimental pressure data which
validated CAP-TSD for multiple component applications with
mutual aerodynamic interference effects. Preliminary
flutter applications of CAP-TSD waere presented in Ref. 4 for
a simple well-defined wing case. The caiculated flutter
boundaries compared well with the experimental data which
gives confidence in CAP-TSD for aeroelastic prediction.
More recently, the code was modified to include entropy and
vorticity effects to treat cases with reiatively strong shock
waves.5 Without these effects, the isentropic formulation
typically overpredicts the shock strength and locates the
shock too far aft in comparison with experiment. The
modified code includes the entropy and vorticity effects while
retaining the relative simplicity and cost efficiency of the
small-disturbance potential formulation. As shown in
Ref. 5, the results obtained by including these effects were
in very good agreement with parallel Euler calculations for
attached-flow strong-shock cases.

In Refs. 1 to 5 the CAP-TSD code was shown to be
accurate and efficient for transonic unsteady aerodynamic
and aeroelastic applications. It is therefore timely to utilize
such a computer code to study the generalized aerodynamic
forces (GAFs) and aeroelastic stability characteristics of
wings in transonic flow. The purpose of the paper is
therefore to report on the results of a transonic unsteady



aerodynamic and aeroelastic analysis of a generic transport-
type wing. The primary objectives of the research were to:
(1) calculate transonic GAFs and aeroelastic characteristics
for a wide range of parameter variations; and (2) correlate
and physicaily interpret the resulting pressure
distributions, GAFs, and aeroelastic stability characteristics
including flutter.

In this study, a binary aeroelastic system consisting of
simple bending and torsion modes was used to investigate
aeroelastic behavior at transonic speeds. Results were
obtained for incremental changes in freestream Mach
number. Effects of mass ratio and bending-torsion
frequency ratio on aeroelastic characteristics were also
considered. The present work is analogous to the numerous
aeroelastic studies performed for two-dimensional airfoils
by many researchers including Isogai,6 Yang et al.,7 and
Edwards, et al.8 In Refs. 6 to 8, asroelastic analyses were
performed for a large range of freestream conditions and
structural parameter variations for numerous airfoil
sections. These studies contributed significantly to the
understanding of aeroelastic behavior at transonic Mach
numbers. The present work may similarly give physical
insight into the flow mechanisms which controi transonic
aeroelastic behavior of three-dimensional wings.

The meotivations for the study were to gain a better
understanding of transonic unsteady flows and aeroelastic
behavior, and the need to develop efficient computational
methods to predict and investigate aeroelastic phenomena.
For example, the transonic GAFs in the present study were
obtained by extending the pulse transfer-function analysis of
Refs. 9 and 10 to treat flexible modes of motion. In this
analysis, the GAFs are obtained indirectly from the response
due to a smoothly varying exponentially shaped pulse. Use of
the pulse transter-function analysis gQives considerable
detail in the frequency domain with a significant reduction in
cost over the alternative method of forced harmonic
oscillation. The paper presents a description of the puise
analysis including results and comparisons which assess the
capability. Transonic aeroelastic stability analyses are
performed with the GAFs from the pulse analysis, using
state-space aeroelastic modeling such as that reported in
Refs. 11 to 14, The stability analysis of the present study is
an extension of the state-space model of Refs. 13 and 14 for
binary aeroelastic analysis of a three-dimensional wing. A
briet description of the procedure is given in a subsequent
section.

A secondary objective of the present work was to
determine whether the analysis techniques are capable of
predicting more challenging aseroelastic problems of
significant current interest. For example, the results to be
presented show a second, more critical (lower) dip in
flutter speed at transonic Mach numbers slightly higher than
the first dip. A flutter boundary with two transonic dips has
indeed been found experimentally for a transpon-type
supercritical-wing flutter model tested at the NLR in the
Netherlands.15 The first dip was identified in Ref. 15 as the
*usual” transonic dip which involves a bending-dominated
flutter mode, for the wing in predominantly attached flow.
The second dip, however, occurred in a range of Mach
number where the flow was separated and was identified as a
torsional-buzz type of flutter, since the fiutter mode was
almost identical with the torsion vibration mode shape. The
phenomenon was attributed in Refs. 15 and 16 to an
aerodynamic resonance which occurred in a narrow range of
Mach number at higher angles of attack for this wing. It has
been suggested by Mabey,17 that if this aerodynamic
resonance occurs at frequencies close to wing torsional
trequencies, the single degree-of-freedom torsional buzz
may result. A similar torsional buzz phenomenon has also
been reported by Moss and Piercel8 where the primary
torsion mode of a series of wings tended to be strongly
excited under separated flow conditions. This excitation led

to a sustained high-amplitude response or limit-cycle
torsional buzz. In this case, a strong shock wave occurred on
the upper surface of the wing, which was approximately
paraliel to the torsion-mode node line. Also, the shock was
of fairly uniform strength across the span in the outboard
region of the wing. The movement of the shock with angle of
attack was such that the slope of the local pitching moment
about the node line was negative rather than positive. As
discussed in Refs. 17 and 18, these features seem o be

necessary conditions for the occurrence of torsional buzz.

Although the current work is limited to inviscid attached
flow, the results to be presented exhibit similar flutter
behavior as observed in the experiments reported in
Refs. 15 to 18 and described above. Certainly when strong
shocks are present in the inviscid calculations or when the
physical situation is known to involve separated flow, the
present analysis needs to be extended to account for
unmodeled effects. Nevertheless, the detailed comparisons
and physical interpretations presented may give an increased
understanding of unsteady transonic flows and insight into
the fundamental aeroelastic mechanisms responsible for
flutter at transonic speeds.

Computational Procedures

In this section, the computational procedures used in the
present study are described inciuding the CAP-TSD code, the
pulse transfer-function analysis, the structurali mode
shapes, and the aeroelastic stability analysis.

CAP-TSD Code

The recently developed CAP-TSD1 finite-difference code
was used to caiculate the steady and unsteady aerodynamics
presented in the paper. The CAP-TSD code is an unsteady
transonic small-disturbance (TSD) code developed for
transonic aeroelastic analysis of complete aircraft
configurations. The code uses a time-accurate approximate
factorization (AF) algorithm developed by Batinal9 for
efficient solution of the unsteady TSD equation. The AF
algorithm consists of a Newton linearization procedure
coupled with an internal iteration technique. The CAP-TSD
code is capable of treating combinations of lifting surfaces
and bodies, and includes the following algorithm features:
(1) Engquist-Osher monotone differencing, (2)
nonreflecting far field boundary conditions, (3) second-
order accurate spatial differencing in supersonic regions of
the flow, and (4) entropy and vorticity effects to treat cases
with strong shock waves. Further details of the aigorithm
development and solution procedures are reported in Refs. 3,
5, and 19. A detailed description of CAP-TSD may be found
in Ref. 1.

Pulse Tranafer-Function Anglysis

Generalized aerodynamic forces which are typically used
in aeroelastic analyses may be obtained by calculating
saveral cycles of a harmonically forced oscillation with the
determination of the forces based upon the last cycle of
oscillation. The method of harmonic oscillation requires one
flow field calculation for each value of reduced frequency of
interest. By contrast, GAFs may be determined for a wide
range of reduced frequency in a single flow field calculation
by the pulse transfer-function analysis.9,10 In the pulse
analysis, the GAFs are computed indirectly from the
response of the flow field due 1o a smoothly varying
exponentially shaped puise. Results computed using the
pulse analysis for a pitching flat plate airfoil were first
presented in Ref. 9. These resulls were in good agreement
with parallel linear theory calcuiations which validated the



accuracy of the analysis. Applications to transonic airfoil
cases were also in good agreement with GAFs computed using
the harmonic method. Calculations for a flat plate wing
undergoing a simpie rigid pitching motion were presented in
Ref. 10. These three-dimensional resuits were also shown
to agree well with linear theory for reduced frequencies less
than unity. Therefore, because of the computational
efficiency of the pulse transter-function analysis, the
capability was extended in the present study to treat general
flexible modes such as the natural vibration modes of a wing.
The pulse is expressed as

-w(t- lc)2

v =q_e (1)

where qo is the pulse amplitude, w is a constant related to
the width of the pulse, and t¢ is the time at the center of the
pulse. The deformation of any point on the wing at time t, is
determined by the product of the puise motion and the mode
shape. The deformation z(x,y,t) is then given by

-w(t - (c)2
z(x,y.) =q_ ¢ f(x.y) (2)

where f(x,y) is the mode shape, and x and y are
nondimensional Cartesian coordinates in the streamwise and
spanwise directions, respectively. A small pulse is
prescribed in a given mode of motion and the aerodynamic
transients are calculated. The aerodynamic transients are
then used to obtain the GAFs in the frequency domain by a
transfer-function analysis. In this analysis, a fast Fourier
transform (FFT) of the aerodynamic transients is divided by
the FFT of the corresponding pulse motion to calculate the
GAFs. The GAFs, Ajj, are defined as the integrated forces
resulting from pressure induced by mode j acting through
the displacements of mode i. The transform assumes that the
system is linear which is a valid approximation for most
transonic cases, since experience has shown that the
response for harmonic or aeroelastic motion is, in general,
locally linear for small amplitudes of oscillation.9-14

Structural Mode Shapes

In this investigation, simple polynomial equations were
assumed to describe the vibration mode shapes. The
following equations simulate first bending and first torsion
mode shapes of a wing, respectively:

| S
fB=y[(x-E) sinA_, +ycos A, (3)

t‘.r=y[(x--;-)cosAcn~ysinAc/2] (4)

whare A2 is the midchord sweep angle of the wing. The
equation describing the mode shape due to bending (Eq. (3))
assumes that a node line is perpendicular to the wing
midchord line at the root. The equation describing the mode
shape due to torsion (Eq. (4)) assumes that a node line
coincides with the wing midchord line. The amplitude of the
pulse motion is selected to give a maximum tip deflection due
to bending of approximately four percent of the semispan and
a maximum angle of attack at the tip due to torsion of one
degree.

o

Constant sectional properties from root to tip are
assumed for the aeroelastic analyses. This simplified
modeling is consistent with the assumed mode shapes of Egs.
(3) and (4), which in turn assumes that the aeroelastic
motion of the wing can be described by a iinear combination
of the fundamental bending and torsion modes. The
caiculations were performed using state-space aeroeiastic
modeling such as that reported in Refs. 11 to 14. Edwards,
et al.11 used a state-space model employing Pade’
approximants to model the unsteady airloads and
demonstrated good agreement with a time-marching
technique for a linearized case. Bland and Edwards??2
demonstrated that such locally linear procedures may be
used with airloads derived from a transonic smali-
disturbance code for airfoil applications. Batina and
Yang13.14 used a similar procedure to study transonic
aeroelastic stability and response behavior of airfoils with
active controls. The stability analysis of the present study is
an extension of the state-space model of Refs. 13 and 14 for
binary aeroelastic analysis of a three-dimensional wing.
The rasuiting locally linear stability model provides a
relatively inexpensive determination of aeroelastic
stability, while retaining the nonlinear properties of the
transonic mean flow. The model is derived by assuming a
linear superposition of airloads due to bending and torsion
motions. The required airloads are approximated by curve-
fitting the CAP-TSD GAFs with a Pade' approximating
function.13 The function may then be rewritten as a set of
ordinary ditferential equations which, when coupled to the
equations of motion and Laplace transformed, leads to a
linear first-order matrix equation

= (z) =(A] (2}

w
a

(5)

where {z} contains the displacements, velocities, and
augmaented states and [A] is a real matrix of constant
elements. Equation (5) is solved using linear eigenvalue
solution techniques for specified values of the
nondimensional dynamic pressure Q, defined as
(U/(bwgVi))2. The resulting eigenvalues are plotted in a
dynamic pressure “root-locus” type format in the complex
s-plane.

Besuits and Discussion

Results are first presented from the pulse transfer-
function analysis to assess the accuracy and efficiency of the
capability by making comparisons with other calculations.
The pulse analysis was then used in a parameter study to
investigate the effects of freestream Mach number on GAFs at
transonic speeds. Results are also presented from the
aeroelastic stability analysis, obtained using the GAFs from
the pulse analysis.

Configuration Analyzed

The wing selected for the present study is the Royal
Aircraft Establishment (RAE) research wing "A" that was
tested in the RAE 8ft. x 6ft. transonic wind tunnel.20 The
wing is a structurally rigid model that has a simple
planform without dihedral or twist and a symmetric RAE
101 airfoil section with a maximum thickness-to-chord
ratio of 9%. As shown in Fig. 1, the wing has a midchord
sweep angle of 30°, a taper ratio of one-third, and a full-
span aspect ratio of six. The polynomial mode shapes that
were assumed for the wing are shown in Fig. 2. The RAE



wing A is a standard configuration selected by the AGARD
Fluid Dynamics Panel for steady flow caiculations. Although
the wing is a rigid mode! and no flutter data is available, the
wing was selected for the present study because of the

simplicity of the planform and the availability of

experimental steady pressure data.20 The experimental
steady pressure data that is reported in Ref. 20, however,
was measured with the wing mounted on an axisymmetric
fuselage. Therefore, a simple fuselage was modeled with
CAP-TSD, along with the wing, to allow for direct
comparison with the steady pressure data. All of the other
calculations to be presented were performed without the
fuselage.

Calculations were performed for thirteen values of
freestream Mach number including M = 0.8, 0.825, 0.85,
0.875, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, and
0.98. Results are presented mainly for a subset of these
cases, namely at M = 0.8, 0.9, 0.92, 0.94, 0.96, and 0.98.
For M 2 0.94, relatively strong shock waves are present in
the flow. For these cases, the isentropic caiculation
typically overpredicts the shock strength and locates the

RAE wing "A"

Agso =30°, AR =6.0, TR = 1/3

Fig. 1 RAE wing "A" geometry.

Mode 1: Bending

Mode 2: Torsion

Fig. 2  Structural mode shapes.

shock too far aft in comparison with the physical situation.
Therefore, the calculations were repeated for M 2 0.94 by
including the entropy and vorticity effects to accurately
treat these cases. Furthermore, calculations were also
performed at M = 0.9 for a series of wings created by
varying the midchord sweep angle from Ac/2 = 14° 10 40°,
These results were obtained to determine effects of wing
sweep on transonic GAFs and flutter. These results may be
found in Ref. 21,

Steady Pressure Results

Steady pressure results are presented first to assess the
basic character of the transonic flow. Since the unsteady
flow field and hence generalized aerodynamic forces depend
strongly on the transonic steady-state flow, the steady
pressure distributions frequently can give physical insight
into critical flow mechanisms which control aeroelastic
phenomena. Of interest are the flow characteristics in the
wing tip region such as the shock strength and shock location
relative to the node line of the torsion mode.

—— CAP-TSD

1.0 o Experiment

©p
-5
-1.0 i A 1 A )
e 2 4 6 8 1.0
x/c
(a) 7 = 0.40.
—— CAP-TSD
10 o Experiment
o
-5
,1'0 . 1 1 1 ]
0 2 4 6 8 1.0
xc
(b) n =0.85.

Fig. 3  Comparison between CAP-TSD and experimental
steady pressure distributions on the RAE wing
"A" at M = 0.90 and oo = 0°.
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Fig. 4  Steady pressure distributions for a range of Mach number at ao = 0°.

. - To assess the
accuracy of the CAP-TSD solution for this configuration,
results were obtained for the RAE wing A and fuselage at
M = 0.9 and ag = 0° for comparison with the experimental
data. Steady pressure distributions at two span stations
along the wing are presented in Fig. 3. Results for 1} = 0.40

are shown in Fig. 3(a); results for T| = 0.85 are shown in
Fig. 3(b). The caiculated pressures are identical along the
upper and lower wing surfaces, since the airfoil section is
symmetric and the wing is at 0° angle of attack. These
pressure distributions indicate the presence of embedded
supersonic regions along the upper and lower surfaces. A
mild shock wave also occurs in the inboard region of the wing
(not shown). [n general, the CAP-TSD pressures agree well
with the experimental data.

Effects of Freestream Mach Number - Steady
pressure distributions at six different Mach numbers and
ao = 0° are presented in Fig. 4. The pressures for M 2 0.94
were computed including the entropy and vorticity
corractions. At M = 0.8, the calculated pressures indicate
that the flow is entirely subcritical. At M = 0.9, there is a

TSD + entropy + vorticity

Fig. 5 Steady pressure distributions at n = 0.9 for a
range of Mach number at ao = 0°.

mild shock wave in the inboard region of the wing that
weakens in the outboard direction toward the wing tip. When
the freestream Mach number was increased to M = 0.92 and
0.94, a moderately strong shock wave forms across the span
along the upper and lower wing surfaces. In the outboard
region of the wing, the shock is approximately parallel to the
torsion-mode node line at the local midchord. Here the shock
is also of fairly uniform strength in the spanwise direction.
These features of the shock location and strength are similar
to those reported in Refs. 17 and 18, which were considered
to be necessary (but not sufficient) conditions for torsional
buzz to occur. When the Mach number was further increased
to M = 0.96 and 0.98, the shock moves aft towards the
traiting edge. Since the steady pressure distributions show
relatively small changes in the range 0.8 < M < 0.9, it is
anticipated that only small changes will occur in the GAFs.
Between M = 0.92 and 0.98, much larger changes in the
GAFs are expected because of the larger differences in the
steady flows, especially in the wing tip region.

Figure 5 shows more detailed comparisons of the steady
pressure distributions at 7§ = 0.9 for the six Mach
numbers ranging from M = 0.8 to 0.98. These comparisons
of pressures clearly show the transonic steady flow
characteristics in the wing tip region. For M 2 0.94,
results corresponding to the calculations with and without
entropy and vorticity effects are shown.  Without entropy
and vorticity effects, the shock is stronger and moves aft
much faster with increasing Mach number. At M = 0.96 and
0.98, for example, the isentropic shock is located
approximately 20% chord downstream of the nonisentropic
shock. Also, at M = 0.98 the isentropic calculation predicts
that the shock wave is at the trailing edge. Furthermore, the
pressure distributions of Fig. 5 show that the shock wave
crosses the torsion-mode node line with increasing Mach
number near M = 0.94. This fact is expected to play a
significant role in the aeroelastic behavior of the wing.

Generalized Aerodynamic Force Results

Generalized aerodynamic forces are presented beginning
with an assessment of the accuracy and efficiency of the
pulse transfer-function analysis relative to harmonic
oscillation calculations. Further results are then presented
from the calculations which include the nonisentropic
corractions to demonstrate the effects of freestream Mach
number on GAFs. All of the resulls are presented in the form
of real and imaginary components of the GAFs, Ajj, as
functions of the reduced frequency k. In the present study,
bending and torsion are defined as modes 1 and 2,
respectively.



. - To assess the accuracy
of the pulse transfer-function analysis to treat flexible mode
shapes, rasults were obtained for the wing modeled as a fiat
plate at M = 0.9 and ag = 0°. These results are compared
with linear theory results computed using RHOIV, an
assumed pressure mode kernel function method for simple
harmonic motion.22.23 The RHOIV generalized aerodynamic
forces were obtained for eleven values of reduced frequency
ranging from k = 0.0 to 1.0 in increments of 0.1.
Comparisons of results from the puise analysis and RHOIV
are given in Fig. 6. The resuits shown are for the bending
mode GAF due to torsion motion, A12, which is similar to
wing unsteady lift-curve siope. The two sets of results are
in good agreement, for the wide range of k shown, which
validates the pulse analysis for application to flexible mode
shapes. Results for the other three GAFs show similar good
agreement between CAP-TSD and RHOIV and therefore are not
shown.21

Iransonic Comparigon. - To assess the accuracy of
the puise analysis for transonic applications, GAFs were
obtained for the wing at M = 0.9 and ag = 0°. The accuracy
of these forces is determined by making comparisons with
similar results computed using the harmonic method.
Results from the harmonic method were obtained for eleven
values of reduced frequency ranging from k = 0.0 to 1.0 in
increments of 0.1. Comparisons of the A12 GAF calculated
by the pulse analysis and the harmonic method are shown in
Fig. 7. The two sets of results are in very good agreement
which validates the pulse transtfer-function analysis for
application to transonic cases. Results for the other three
GAFs show similar good agreement between the pulse
analysis and the harmonic method and therefore are not
shown.21

With respect to computational efficiency, the harmonic
method required one flow field caiculation for each value of
reduced frequency for each mode of motion. This is in
contrast to the pulse analysis which determined the GAFs for
the entire range of frequency in a single flow field

20

F —CAP-TSD
15 = o RHOIV
10 |-

“‘M Real R

A12 5P

O pe=a=e Imaginary
S5

.10 | | | 1 ]
(o] 2 4 B 8 1.0
Reduced frequency k

Fig. 6 Comparison between generalized aerodynamic
forces calculated by CAP-TSD (linear) and
RHOIV for the wing modeled as a flat plate at

M =09 and ap = 0°.

calculation for each mode. Since eleven values of reduced
frequency were selected for calculation by the harmonic
method, the computational cost of obtaining the pulse resuits
was consequently about an order of magnitude less than the
cost of the harmonic method results. For the case considered
here, the pulse analysis is therefore a relatively
inexpensive method of determining transonic GAFs which in
turn makes it economically feasible to conduct the parameter
variation study reported below.

. - To
determine the effects of freestream Mach number on the
GAFs, results are presented for the wing at M = 0.8, 0.9,
0.92, 0.94, 0.96, and 0.98 at zero mean angle of attack,
corresponding to the steady pressure distributions presented
in Figs. 4 and 5. Comparisons of GAFs at these Mach
numbers are presented in Figs. 8(a) to 8(d).

For the GAFs resuiting from the pressure induced by
bending (A11 and A21 shown in Figs. 8(a) and 8(b),
respectively), the real part of A21 shows the most
significant change due to Mach number. With increasing
Mach number, the real part of A21 decreases in magnitude
for 0.92 £ M < 0.96. This decrease is attributed to an aft
shift in the aerodynamic center which begins to occur after
M = 0.92 due to the formation of the shock wave in the tip
region. As shown in the steady pressure distributions of
Figs. 4 and 5, there is a mild shock wave at M = 0.92 which
grows in strength when the Mach number is increased to
M = 0.94. Since A21 is similar to a wing moment coefficient
and the torsion-mode node line is located at the local
midchord, an aft shift in the asrodynamic center produces a
decrease in magnitude of the real part of A21. Significant
changes in aeroelastic behavior may occur for M > 0.92
because of this large decrease in magnitude of A21.

For the GAFs resulting from the pressure induced by
torsion (A12 and A22 shown in Figs. 8(c) and 8(d),
respectively), increasing the Mach number produced large
changes in the forces especially in the low k range. These

20
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Imaginary
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Fig. 7 Comparison between CAP-TSD generalized

aerodynamic forces calculated by pulse analysis
and harmonic analysis for the wing at M = 0.9
and ap = 0°.
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Fig. 8 Comparison of generalized aerodynamic forces
(GAFs) for a range of Mach number at ao = 0°.
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changes in GAFs are of primary interest because they occur
in the range of reduced frequency where flutter typically
occurs (0.1 < k < 0.4). With increased Mach number from
M = 0.8 to 0.92, for example, both the real and the
imaginary parts of A12 increase in magnitude. The A¢2
force is similar to wing lift-curve slope which increases as
Mach number increases. This increases both the magnitude
and the phase lag of A12 which in turn controls the
aeroelastic behavior for 0.8 < M < 0.92. As discussed by
Isogaié and later by Zwann,24 it is the increased phase lag of
A12 which is the flow mechanism that produces the
transonic dip in flutter speed. Also with increased Mach
number, the reai part of A22 generally decreases which is
again attributable to an aft shift in aerodynamic center due to
shock waves. Furthermore, for the higher Mach numbers in
the range 0.94 s M < 0.98, the imaginary part of A22
changes sign for low reduced frequencies. This change in
sign indicates the possibility of single degree-of-freedom
flutter in torsion.

Aeroeiastic Stability and Flutter Resuits

Aeroelastic stability and flutter results are presented
next to investigate aeroelastic characteristics at transonic
speeds. Calculations were performed for several values of
freestream Mach number, mass ratio, and for wh/wg = 0.1,
0.3, and 0.5. Root-ioci plots for p = 100 and wh/wg = 0.3
are presented in Fig. 9 for the six Mach numbers
corresponding to the steady pressure distributions of Figs. 4
and 5 and the GAFs of Figs. 8(a) to 8(d). Stability results
for M = 0.8, 0.9, 0.92, 0.94, 0.96, and 0.98 are shown in
Figs. 9(a) through 9(f), respectively, computed including
the nonisentropic corrections. The stability plots show the
migration of bending and torsion root-loci as Mach number
is increased. The increment in dynamic pressure shown in
the figures is AQ = 0.2. At M = 0.8, the curves indicate a
classical bending-torsion type of aeroelastic behavior. Here
the torsion branch moves to the left in the stable left-half
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plane, with increasing dynamic pressure, while the
bending-dominated branch becomes the flutter mode. With
increasing Mach number in the range 0.8 < M < 0.92, the
flutter dynamic pressure decreases and flutter occurs at a
lower frequency. Between M = 0.92 and 0.94, the root-loci
coalesce in frequency and then switch, in that the flutter
crossings at M = 0.94, 0.96, and 0.98 originate from the
wind-off torsion mode rather than the bending mode. A rapid
increase in the flutter frequency thus occurs in the range
0.92 < M < 0.96, from a value close to the bending natural
frequency at M = 0.92 to a value close to the torsion natural
frequency at M = 0.96. These aeroelastic characteristics are
further explained by considering the corresponding flutter
boundaries which are given in Fig. 10, and correlating these
results with the steady pressures of Figs. 4 and 5, and the
GAFs of Figs. 8(a) to 8(d). Figure 10(a) shows the flutter
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Fig. 10 Effects of mass ratio on fiutter characteristics at
ao = 0°.

speed index (defined as U/(bogVi)) versus Mach number
and Fig. 10(b) shows the nondimensional flutter frequency
(defined as w/wg) versus Mach number. In these figures,
the points along the p = 100 curves which are labeled (a)
through (f), correspond to the root-loci of Figs. 9(a) to
9(f), respectively. Both isentropic as well as nonisentropic
curves are plotted. Flutter resulls are also shown in Fig. 10
for u = 20 to indicate effects due to mass ratio.

The flutter boundaries of Fig. 10(a) show two dips in
flutter speed index, the second of which is deeper than the
first. These transonic dips in flutter speed are deeper at the
higher mass ratio of p = 100. More specifically, as Mach
number increases in the range 0.8 s M < 0.92, the flutter
speed decreases as expected. This decrease is due to the
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increased phase lag of the A12 generalized aerodynamic force
which occurs with increasing Mach number (Fig. 8(c)).
The bottom of the first dip occurs at M = 0.91 - 0.92 for
both u = 20 and 100. Here the shocks are relatively weak,
and the frequency curves of Fig. 10(b) suggest that the
flutter mode is predominately bending since the flutter
frequency is close to the bending mode frequency. Inspection
of the corresponding flutter eigenvectors confirmed this. At
M = 0.92 and p = 100, for exampie, the ratio of the
magnitudes of bending and torsion in the flutter mode
gigenvector is 8:1. With a further small increase in Mach
number, there is a rapid increase in flutter speed
(Fig. 10(a)) which defines the “other side" of the first dip.
Physically this occurs because there is a significant decrease
in the magnitude of the A2¢ and A22 GAFs for
0.92 < M < 0.94 (Figs. 8(b) and 8(d)) due to the aft shift in
aerodynamic center. Recalling that these GAFs are fike
moment coefficients, they decrease in magnitude when the
aerodynamic center shifts aft toward the torsion-mode node
ling. Associated with this change in GAFs is a significant
decrease in the magnitude of the imaginary part of A22
which indicates a loss of aerodynamic damping in torsion.
The decrease in torsional damping causes the flutter mode to
rapidly transition from a bending-dominated instability at
M = 0.92 to a torsion-dominated instability at M = 0.94.
This transition is shown by the rapid increase in flutter
frequency from M = 0.92 to 0.94 shown in Fig. 10(b). It
was also shown in Figs. 9(c) and 9(d), by the switch in
root-loci, which results in a much higher frequency at the
flutter crossing. Near M = 0.94, the shock, which is
approximately parallel to the torsion-mode node line in the
outboard region of the wing, crosses the node line with
increasing Mach number. This has a destabilizing effect with
respect to flutter since the damping in torsion is actually
negative for low values of k as shown in Fig. 8(d). The
flutter speeds in the first part of the second dip are lower in
the isentropic calculations since the shock wave is stronger
and located further aft of the torsion-mode node ling, as
praviously shown in Fig. 5. The further loss of torsional
damping at the higher Mach numbers produces a flutter mode
that is almost identical to the torsion mode shape, as
suggested by the flutter frequency values for M > 0.95 shown
in Fig. 10(b). The ratio of the magnitudes of torsion and
bending in the flutter eigenvector at M = 0.97 and u = 100,
for example, is 80:1. Therefore the instability in the second
dip is a single degree-of-freedom flutter similar to the
torsional-buzz phenomenon reported in Refs. 15 to 18.
With a further increase in Mach number, the shock wave in
the isentropic calculations moves aft to the trailing edge near
M = 0.97, which has a stabilizing influence on the
aeroelastic system since the flow about the wing is mostly
supersonic. With the shock at the trailing edge, the fiutter
speed increases rapidly thus defining the “other side” of the
sacond flutter dip. In the more-accurate nonisentropic
calculations, however, the shock wave does nol reach the
trailing edge for the range of freestream Mach number
considered. Hence, the flutier characteristics are
considerably different and the importance of inciuding
entropy and vorticity effects is evident.

Effects of bending-torsion frequency ratio on flutter
characteristics are shown in Fig. 11. Flutter speed index
and nondimensional flutter frequency as functions of
freestream Mach number are shown in Figs. 11(a) and
11(b), respectively. Calculations were performed for
wh/wg = 0.1, 0.3, and 0.5 with a mass ratio of p = 100. In
Fig. 11, the curves for wp/wg = 0.3 and p = 100 are the
same as those shown in Fig. 10. The results indicate that the
first dip in flutter speed is significantly influenced by
oh/og. With op/wg = 0.5, for example, the dip is very
shallow in comparison to the dip with wh/wg = 0.1. By
decreasing oh/wg from 0.5 to 0.1, the flutter speed
decreases by 56%. The bottom of the dip aiso shifts to a
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slightly higher Mach number. The flutter frequency curves
of Fig. 11(b) show the same trends for the three frequency
ratios, each curve being shifted toward the respective
bending mode frequency for M < 0.93. The flutter mode at
the bottom of the first flutter dip, however, is somewhat
different for the three cases. Inspection of the flutter
eigenvactors revealed that the ratios of magnitudes of
bending and torsion for wh/wg = 0.1, 0.3, and 0.5 are 70:1,
8:1, and 5:1, respectively. This indicates that the flutter
mode at the bottom of the dip for oh/wg = 0.1 is a single
degree-of-freedom bending instability. The resuits further
indicate that the second dip in flutter speed is independent of
the bending-torsion frequency ratio which is not unexpected
since here the flutter mode is a single degree-of-freedom
torsional instability.

Concluding Remarks

Transonic aeroelastic stability analyses and flutter
calculations were presented for a generic transport-type
wing based on the use of the CAP-TSD (Computational
Aeroelasticity Program - Iransonic Small Risturbance)
finite-difference code. In this study, a binary aeroelastic
system consisting of simple bending and torsion modes was
used to study aeroelastic behavior at transonic speeds.
Transonic generalized aerodynamic forces (GAFs) and
aeroelastic characteristics were computed for a wide range
of freestream Mach number. The CAP-TSD calculations were
performed by including entropy and vorticity effects to more
accurately treat cases with strong shock waves.

An efficient method of calculating transonic generalized
aerodynamic forces was extended to treat general flexible
modes of motion of a wing. The method presented was the
pulse transfer-function analysis which determines the
unsteady forces indirectly from the response due to a
smoothly varying exponentially shaped puise. Comparisons
of calculated GAFs for both linear and nonlinear cases showed
good agreement with alternative caiculations which verified
the pulse analysis for application to flexible modes.
Furthermore, the computational resources required by the
pulse analysis were an order of magnitude less than those
required by the harmonic method.

The pulse analysis was used in a parameter study to
investigate the effects of freestream Mach number on GAFs at
transonic speeds. The GAFs from the pulse analysis were
utilized in aeroelastic stability and flutter calculations.
Flutter boundaries were computed which had two transonic
dips in flutter speed. The first dip was the "usual® transonic
dip which invoived a bending-dominated flutter mode. The
second dip was characterized by a single degree-of-freedom
torsion oscillation. This single degree-of-freedom flutter
occurred at the higher Mach numbers considered due fo a loss
of aerodynamic damping in torsion when the steady shock
location was downstream of the torsion-mode node line.
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